Microbial gene transfer: an ecological perspective.
نویسنده
چکیده
Microbial gene transfer or microbial sex is a means of exchanging loci amongst prokaryotes and certain eukaryotes. Historically viewed as a laboratory artifact, recent evidence from natural populations as well as genome research has indicated that this process may be a major driving force in microbial evolution. Studies with natural populations have taken two approaches- either adding a defined donor with a traceable gene to an indigenous community, and detecting the target gene in the indigenous bacteria, or by adding a model recipient to capture genes being transferred from the ambient microbial flora. However, both approaches usually require some cultivation of the recipient, which may result in a dramatic underestimation of the ambient transfer frequency. Novel methods are just evolving to study in situ gene transfer processes, including the use of green fluorescent protein (GFP)-marked plasmids, which enable detection of transferrants by epifluorescence microscopy. A transduction-like mechanism of transfer from viral-like particles produced by marine bacteria and thermal spring bacteria to Escherichia coil has been documented recently, indicating that broad host range transduction may be occurring in aquatic environments. The sequencing of complete microbial genomes has shown that they are a mosaic of ancestral chromosomal genes interspersed with recently transferred operons that encode peripheral functions. Archaeal genomes indicate that the genes for replication, transcription, and translation are all eukaryotic in complexity, while the genes for intermediary metabolism are purely bacterial. And in eukaryotes, many ancestral eukaryotic genes have been replaced by bacterial genes believed derived from food sources. Collectively these results indicate that microbial sex can result in the dispersal of loci in contemporary microbial populations as well as having shaped the phylogenies of microbes from multiple, very early gene transfer events.
منابع مشابه
The genotypic view of social interactions in microbial communities.
Dense and diverse microbial communities are found in many environments. Disentangling the social interactions between strains and species is central to understanding microbes and how they respond to perturbations. However, the study of social evolution in microbes tends to focus on single species. Here, we broaden this perspective and review evolutionary and ecological theory relevant to microb...
متن کاملAntibiotics: an ecological perspective
The effects of antibiotics on the indigenous microbes of the gut have been the subject of extensive study ever since the discovery of these drugs in the 1940s and their subsequent commercial production. Yet nearly all of this work has concerned the effects of individual antibiotics on individual, cultivated strains of bacteria in the laboratory, or on specific species of bacteria cultivated fro...
متن کاملMicrobial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have be...
متن کاملMobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota
Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural cont...
متن کاملGenetic drift suppresses bacterial conjugation in spatially structured populations.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 1 1 شماره
صفحات -
تاریخ انتشار 1999